Aller au contenu principal

MEMBRANE SCALE UP FOR CHEMICAL INDUSTRIES

MEASURED
Pilier 2 "Recherche collaborative"
Clusters - Cluster 4 - Digital, industry & space
Responsable scientifique
CARRETIER
Emilie
Rôle
Partenaire
Unité / Service
M2P2
Appel
HORIZON-CL4-2022-RESILIENCE-01

The project MEASURED aims at developing and demonstrating at TRL7 advanced membrane materials for Pervaporation (PV), Membrane Distillation (MD) and Gas Separation (GS) technologies applied to acrylic ester production, membrane manufacturing and gas separation from a carbon capture & utilization (CCU) stream. PV targets 1 m2 of membrane processing H2O flux > 1.0 kg/m2·hr using a 55-channel tube in the industrial setting of ARKEMA, a stability > 90% over 3 months of testing, resulting in a CAPEX 30% lower compared to current cost - from 2100 €/m2 to 1500 €/m2. MD aims at treating the daily amount of generated wastewater (70 L/h) from the manufacturing facility of PVDF membranes at GVS Spa with energy supply via about 100 Solar/Photovoltaic collectors, showing higher chemical resistance (> 10%), >25% reduction of water footprint, permeability of reused MD for Microfiltration > 500 L/m2·hr·bar. GS prototype will be scaled-up to a membrane area of 1.2 m2/module using a 61-channel tube installed downstream the GAYA methanation unit of Engie, reducing the membrane cost (produced at large scale) from 1944 €/m2 to 795 €/m2 (almost 60%). At the end of the project, the integrated MEASURED technologies will reach a TRL7 demonstration over 20,000 hours operation under (industrial) operational conditions. MEASURED includes a thorough multiscale modelling and simulation techniques including a full Life Cycle Assessment and addresses the societal implications to increase the acceptance and further market readiness. The interdisciplinary consortium – overall 17 participants: 2 SMEs, 7 industries and 8 Universities/research centers – will comprehensively study the development of advanced materials, reactor design and process configuration to identify the most sustainable options from a demonstration, techno-economic and environmental point of view.